
Paradigms of Software TestingParadigms of Software Testing

Cem Kaner -- kaner@kaner.com
James Bach -- james@satisfice.com

November, 1999

2Kaner & Bach, Paradigms

ThesisThesis

• Software testing is theory testing.
• Software testing is cognition.
• Software testing is NOT computer

science.
• Experts in the field are in substantial

disagreement over what software
testing is.

• You’ll do better testing if you know
about how different communities
think about testing.

3Kaner & Bach, Paradigms

The PuzzleThe Puzzle

• Black box testing groups vary widely in their
approach to testing.

• Tests that seem essential to one group seem
uninteresting or irrelevant to another.

• Big differences can appear even when both
groups are composed of intelligent,
experienced, dedicated people.

• Why?

4Kaner & Bach, Paradigms

ParadigmsParadigms

• A paradigm provides a structure of thinking about an area.

– Typically, the description of a paradigm includes one or a few
paradigmatic cases -- key example. Much of the reasoning
within the paradigm is based on analogies to these key cases.

– The paradigm creates a mainstream of thinking--it provides
insights and a direction for further research or work. But it
implicitly also defines limits on what is relevant, interesting, or
possible. Things outside of the paradigm are uninteresting.
People who solve the types of puzzles that are characteristic of
the paradigm are respected, whereas people who solve other
types of puzzles instead are outsiders, and not well respected.

– A testing paradigm would define the types of tests that
are (to the person operating under this paradigm)
relevant and interesting.

5Kaner & Bach, Paradigms

Paradigms (Kuhn)Paradigms (Kuhn)

• See Thomas Kuhn, The Structure of Scientific
Revolutions.

• A paradigm is a model based on a shared experiment that
includes law, theory, application and instrumentation
together and from which springs particular coherent
traditions of scientific research.

• A paradigm includes a concrete scientific achievement as
a locus of professional commitment, prior to the various
concepts, laws, theories and points abstracted from it.

• The pre-paradigm period . . . is regularly marked by
frequent and deep debate over legitimate methods,
problems, and standards of solution, though these serve
rather to define schools than to produce agreement.

6Kaner & Bach, Paradigms

Paradigms Define CommunitiesParadigms Define Communities

• A paradigm is about who belongs to a community, and the
“constellation of commitments” within the community.

• Sometimes adherents of a paradigm are so entrenched in it that
they can’t see its limitations at all. Their world is the paradigm.
Any ideas outside the paradigm are seen as crazy, stupid,
misguided, or else are assimilated into the paradigm.

• Examples:
– Cognitive vs. Objective paradigms of engineering.
– Heuristic vs. Analytic paradigms of testing.
– Black Box vs. White Box testing.
– Contract-Driven vs. Market-Seeking development.
– Adversarial vs. Supportive tester/developer relations.

7Kaner & Bach, Paradigms

Black Box Testing ParadigmsBlack Box Testing Paradigms

• This list reflects our (Kaner’s / Bach’s) observations
in the field and is not exhaustive.

• We put one on the list if we’ve seen credible testers
drive their thinking about black box testing in the way
we describe. A paradigm for one person might merely
be a technique for another.

– We recommend that you try to master the “right”
combination of a few approaches. They are not
mutually exclusive. The right combination will depend
on your situation.

8Kaner & Bach, Paradigms

A List of ParadigmsA List of Paradigms

• Domain driven
• Stress driven
• Specification driven
• Risk driven
• Random / statistical
• Function
• Regression
• Scenario / use case / transaction flow
• User testing
• Exploratory

9Kaner & Bach, Paradigms

Domain TestingDomain Testing

• Tag lines
– “Try ranges and options.”
– “Subdivide the world into classes.”

• Fundamental question or goal
– A stratified sampling strategy. Divide large space of

possible tests into subsets. Pick best representatives
from each set.

• Paradigmatic case(s)
– Equivalence analysis of a simple numeric field
– Printer compatibility testing

10Kaner & Bach, Paradigms

Domain TestingDomain Testing

• Strengths
– Find highest probability errors with a relatively

small set of tests.
– Intuitively clear approach, generalizes well

• Blind spots
– Errors that are not at boundaries or in obvious

special cases.
– Also, the actual domains are often unknowable.

11Kaner & Bach, Paradigms

Stress TestingStress Testing

• Tag line
– “Overwhelm the product.”
– “Drive it through failure.”

• Fundamental question or goal
– Learn about the capabilities and weaknesses of the product by

driving it through failure and beyond. What does failure at
extremes tell us about changes needed in the program’s handling
of normal cases?

• Paradigmatic case(s)
– High volumes of data, device connections, long transaction chains
– Low memory conditions, device failures, viruses, other crises.

• Strengths
– Expose weaknesses that will arise in the field. Lots of security

holes found this way
• Blind spots

– Weaknesses that are not made more visible by stress.

12Kaner & Bach, Paradigms

Specification-Driven TestingSpecification-Driven Testing

• Tag line:
– “Verify every claim.”

• Fundamental question or goal
– Check the product’s conformance with every statement in

every spec, requirements document, etc.
• Paradigmatic case(s)

– Traceability matrix, tracks test cases associated with each
specification item.

• Strengths
– Critical defense against warranty claims, fraud charges, loss of

credibility with customers.
• Blind spots

– Any issues not in the specs or treated badly in the specs.

13Kaner & Bach, Paradigms

Risk-Based TestingRisk-Based Testing

• Tag line
– “Find big bugs first.”

• Fundamental question or goal
– Prioritize the testing effort in terms of the relative

risk of different areas or issues we could test for.

• Paradigmatic case(s)
– Equivalence class analysis, reformulated.
– Test in order of frequency of use.
– Stress tests, error handling tests, security tests, tests

looking for predicted or feared errors.
– Sample from predicted-bugs list.

14Kaner & Bach, Paradigms

Risk-Based TestingRisk-Based Testing

• Strengths
– Optimal prioritization (assuming we correctly

identify and prioritize the risks)
– High power tests

• Blind spots
– Risks that were not identified or that are

surprisingly more likely.

15Kaner & Bach, Paradigms

Random / Statistical TestingRandom / Statistical Testing

• Tag line
– “High-volume testing with new cases all the time.”

• Fundamental question or goal
– Have the computer create, execute, and evaluate huge

numbers of tests.
• Paradigmatic case(s)

– Oracle-driven, validate a function or subsystem (such as
function equivalence testing)

– Stochastic (state transition) testing looking for specific
failures (assertions, leaks, etc.)

– Statistical reliability estimation
– Partial or heuristic oracle, to find some types of errors

without overall validation.

16Kaner & Bach, Paradigms

Random / Statistical TestingRandom / Statistical Testing

• Strengths
– Regression doesn’t depend on same old test every time.
– Partial oracles can find errors in young code quickly and

cheaply.
– Less likely to miss internal optimizations that are invisible

from outside.
– Can detect failures arising out of long, complex chains that

would be hard to create as planned tests.

• Blind spots
– Need to be able to distinguish pass from failure. Too many

people think “Not crash = not fail.”
– Also, these methods will often cover many types of risks, but

will obscure the need for other tests that are not amenable to
automation.

17Kaner & Bach, Paradigms

Function TestingFunction Testing

• Tag line
– “Black box unit testing.”

• Fundamental question or goal
– Test each function thoroughly, one at a time.

• Paradigmatic case(s)
– Spreadsheet, test each item in isolation.

– Database, test each report in isolation

• Strengths
– Thorough analysis of each item tested

• Blind spots
– Misses interactions, misses exploration of the benefits

offered by the program.

18Kaner & Bach, Paradigms

Regression TestingRegression Testing

• Tag line
– “Repeat testing after changes.”

• Fundamental question or goal
– Manage the risks that (a) a bug fix didn’t fix the bug or (b) the fix

(or other change) had a side effect.

• Paradigmatic case(s)
– Bug regression, old fix regression, general functional regression
– Automated GUI regression suites

• Strengths
– Reassuring, confidence building, regulator-friendly

• Blind spots
– Anything not covered in the regression series. Also, maintenance

of this standard list can be extremely costly.

19Kaner & Bach, Paradigms

Scenario TestingScenario Testing

• Tag lines
– “Do something useful and interesting”
– “Do one thing after another.”

• Fundamental question or goal
– Challenging cases that reflect real use.

• Paradigmatic case(s)
– Appraise product against business rules, customer data,

competitors’ output
– Life history testing (Hans Buwalda’s “soap opera testing.”)
– Use cases are a simpler form, often derived from product

capabilities and user model rather than from naturalistic
observation of systems of this kind.

20Kaner & Bach, Paradigms

Scenario TestingScenario Testing

• The ideal scenario has several characteristics:
– It is realistic (e.g. it comes from actual customer or competitor

situations).
– There is no ambiguity about whether a test passed or failed.
– The test is complex, that is, it uses several features and

functions.
– There is a stakeholder who will make a fuss if the program

doesn’t pass this scenario.
• Strengths

– Complex, realistic events. Can handle (help with) situations
that are too complex to model.

– Exposes failures that occur (develop) over time
• Blind spots

– Single function failures can make this test inefficient.
– Must think carefully to achieve good coverage.

21Kaner & Bach, Paradigms

User TestingUser Testing

• Tag line

– Strive for realism
– Let’s try this with real humans (for a change).

• Fundamental question or goal

– Identify failures that will arise in the hands of a
person, i.e. breakdowns in the overall
human/machine/software system.

• Paradigmatic case(s)

– Beta testing
– In-house experiments using a stratified sample of

target market

22Kaner & Bach, Paradigms

User TestingUser Testing

• Strengths
– Design issues are more credibly exposed.
– Can demonstrate that some aspects of product are

incomprehensible or lead to high error rates in use.
– In-house tests can be monitored with flight recorders

(capture/replay, video), debuggers, other tools.
– In-house tests can focus on areas / tasks that you think are (or

should be) controversial.
• Blind spots

– Coverage is not assured (serious misses from beta test, other
user tests)

– Test cases can be poorly designed, trivial, unlikely to detect
subtle errors.

– Beta testing is not free.

23Kaner & Bach, Paradigms

Exploratory TestingExploratory Testing

• Tag line
– “Interactive, concurrent exploration, test design and testing.”

• Fundamental question or goal
– Software comes to tester undocumented. Tester must

simultaneously learn about the product and about the test cases /
strategies that will reveal the product and its defects.

• Paradigmatic case(s)
– Over-the-wall test-it-today testing.
– Third party components.
– Guerrilla testing (lightly but harshly test an area for a finite time)

• Strengths
– Thoughtful strategy for obtaining results in the dark.
– Strategy for discovering failure to meet customer expectations.

• Blind spots
– The less we know, the more we risk missing.

24Kaner & Bach, Paradigms

Paradigm UnificationParadigm Unification

• Unifying these paradigms means trading them in for a more
inclusive paradigm. We believe this paradigm already exists
in Epistemology and Cognitive Psychology: the appropriate
organizing principles of people testing software are the
same as those for people testing theories.

• Software testing is not the child of Computer Science...
it’s more like a half-sister-- an elder half-sister.

• From an epistemic perspective, all the paradigms listed
above are interesting heuristic techniques. Epistemically,
testing is not “cover this” or “model that”. Rather, testing is
critical thinking. Testing is doing science.

25Kaner & Bach, Paradigms

About Cem KanerAbout Cem Kaner

The senior author of Testing Computer Software, Cem Kaner has worked with
computers since 1976, doing and managing programming, user interface design,
testing, and user documentation. Through his consulting firm, KANER.COM, he
teaches courses on black box software testing and consults to software publishers on
software testing, documentation, and development management. Kaner is also the
founder and co-host of the Los Altos Workshop on Software Testing. He is writing a
new book, Good Enough Testing, with James Bach and Brian Marick.

An attorney whose practice is focused on the law of software quality, Kaner usually
represents customers, individual developers or small consulting firms. He is active in
legislative drafting efforts involving software licensing, software quality regulation,
and electronic commerce. He has published Bad Software: What To Do When
Software Fails (with David Pels. John Wiley & Sons, 1998). Kaner was recently
elected to the American Law Institute, a prestigious organization of legal scholars.

Kaner holds a B.A. in Arts & Sciences (Math, Philosophy), a Ph.D. in Experimental
Psychology (Human Perception & Performance: Psychophysics), and a J.D. (law
degree). He is Certified in Quality Engineering by the American Society for Quality.

www.kaner.com kaner@kaner.com www.badsoftware.com

26Kaner & Bach, Paradigms

About James BachAbout James Bach

James Bach is the founder and principal consultant of Satisfice, Inc.
He writes, speaks, and consults on software quality assurance and
testing. In his sixteen years in Silicon Valley-style software
companies, including nine years at Apple Computer, Borland
International, and Aurigin Systems, he's been a programmer, tester,
QA manager, and roving problem-solver. For three years, James was
Chief Scientist at ST Labs, an independent software testing company
in Seattle that performs substantial testing and tester training for
Microsoft.

James is a frequent speaker and writer on the subject of software
quality assurance and development processes. James writes and
edits the "Software Realities" column in IEEE Computer magazine, is
a former section chair of the American Society for Quality and the
Silicon Valley Software Quality Association, and was part of the ASQ
committee that created the Certified Software Quality Engineer
program.

www.satisfice.com james@satisfice.com

27Kaner & Bach, Paradigms

AcknowledgementsAcknowledgements

• Some of this material was developed by James with
the support of ST Labs.

• We thank Bob Stahl, Brian Marick, Doug Hoffman,
Hans Schaefer, and Hans Buwalda for several
insights.

